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Approximation of an open polygonal curve with a minimum number of

circular arcs

R. L. Scot Drysdale∗ Günter Rote†§ Astrid Sturm‡§

Abstract

An algorithm for approximating a given open polyg-
onal curve with a minimum number of circular arcs
is introduced. In computer-aided manufacturing en-
vironments the paths of cutting tools are usually
described with circular arcs and straight line seg-
ments. Greedy algorithms for approximating a polyg-
onal curve with curves of higher order can be found
in the literature. Without theoretical bounds it is
difficult to prove anything about the quality of these
algorithms. We present an algorithm which allows us
to build a directed graph of all possible arcs and look
for the shortest path from the start point to the end
point of the polygonal curve. We can prove a run-
time of O(n2 log n), for n the number of vertices of
the original polygonal chain.

1 Introduction

In computer-aided manufacturing enviroments tool
paths are usully made of line segments and circular
arcs [3, 4, 5]. Approximating data by curves of higher
order [1, 2, 3, 4, 5, 6, 7, 8] has been investigated ex-
tensively in the past. The theoretical bounds of these
problem are not as well studied.

We wish to approximate a polygonal chain P =
(p1, . . . , pn) by a series of circular arcs (which could
include straight lines, as circles of infinite radius). The
endpoints of the arcs are vertices of P . We want our
approximating curve to have distance at most ε from
P . As a first approximation to this problem, one can
look at a region formed from strips of width ε cen-
tered at the polygon edges. However, in the vicinity of
sharp corners, this does not guarantee that the curve
remains close to the given points. Figure 1 shows a
circular piece of a hypothetic curve that can shortcut
the bend at p4 if it is only required to remain in the
strips. (Also, it might overshoot the bend, as indi-
cated in the vicinity of p6, although this looks like
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a theoretical possibility only.) To avoid this, we in-
troduce a gate at every vertex. The approximating
curve is required to pass through all gates in succes-
sion, and the curves are not allowed to pass through a
gate twice. This will guarantee that any curve into a
point pi can be joined with any curve out of pi without
danger of an intersection other than at pi.

For our problem, we assume that we are given a
polygonal “tolerance region” R and a sequence of
gates g1, g2, . . . , gn, which are segments through the
points pi. We will refer to endpoints of gates lying
to the left of P as we walk from p1 to pn as left end-
points and the other endpoints as right endpoints. We
require that the gates do not cross. We require that
R is a simple polygon passing through all gate end-
points, that R does not intersect the interior of gates
or cross the segments connecting corresponding end-
points of successive gates, and that the sections of R

connecting gi with gi+1 do not cross the lines that
extend gi and gi+1. (The line extending a segment is
the line that contains that segment.)

Ideally, the gate gi at vertex pi is a line segment
of length 2ε centered at pi that bisects the angle
pi−1pipi+1. For a convolved curve with sharp bends
close together, we might have to shorten the gates
and to reduce the ε-strip around the edges, as shown
in the right part of Figure 1.

Modeling the curve approximation problem by an
appropriate tolerance region with gates is a problem
of its own, which we do not discuss here. In Figure 1,
we have chosen to approximate the “ideal” circular
boundary at the outer angle of each vertex by a sin-
gle edge of P . One can use more edges to get a finer
approximation, or one could also choose to approxi-
mate the circular arc from inside, to get a guaranteed
upper distance bound of ε. Our time bounds assume
that the size of R is proportional to n.

Definition 1 (proper gate stabbing) A curve
stabs gates gi, . . . , gj properly, if and only if:

• the curve passes through gate gm ∈ {gi, . . . , gj}
from the side of pm−1pm to the side of pmpm+1

• the curve passes through every gate only once
(the stabbing curve may pass through an end-
point of the gate in addition to passing through
it once)
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Figure 1: polygonal tolerance region

Definition 2 (valid circular arc) A circular arc
aij with starting point pi and endpoint pj is a valid
arc if:

• the arc stabs the gates gi+1, . . . , gj−1 properly,

• the arc does not cross any piece of the boundary
of the tolerance region R.

• the arc reaches pi from the correct side of gi and
reaches pj from the correct side of gj .

Note that because R passes through the gate end-
points, any arc that goes through a series of gates
without crossing the tolerance boundary must go
through them in the correct order, so we do not need
to test for that separately.

We can split the problem of determining if a valid
circular arc connects pi with pj into three parts. First,
we compute all arcs between pi and pj that stab all
intermediate gates properly. Second, we compute all
arcs that start at pi and end at pj , reaching both from
the correct side. Third, we compute all arcs between
pi and pj that do not intersect with the tolerance
boundary. A valid circular arc has to be member of
all three result sets.

2 Stabbing through the gates

Definition 3 (point/gate bisectors) Given a
point p and a gate g, let bl be the bisector of p and
g’s left endpoint and br be the bisector of p and g’s
right endpoint.

Lemma 1 The centers of all circles passing through a
vertex p and intersecting a gate g exactly once lie in a
double cone whose boundary is bl and br. The sections
we want are the ones where one half plane includes p

and the other excludes it. (Figure 2 illustrates this.)
In the degenerate case where bl is parallel to br one
“cone” is the strip between the bisectors and the other
“cone” is empty.

Proof. A case analysis of circles centered on the
bisectors and in each of the regions confirms the
claim. �

pi pj
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Figure 2: region of all centers of circles passing
through pi and gate gj

Lemma 2 The region of the centers of all circles
passing through a vertex p which are tangent to the
gate g or intersect it twice forms a parabolic region
(in Figure 2 the parabolic region is the filled region
to the left of the double cone). The boundary of the
parabolic region is given by a parabolic piece, defined
by the centers of the circles which are tangent to the
gate, and by two pieces of the boundary double cone.
In the degenerate case when the bisectors are parallel
the parabolic region is empty.

Proof. Geometric analysis proves the claim. �

The centers of all circles which pass through a point
p and intersect or are tangent to the gate are in the
union of the double cone and the parabolic region
described in Lemma 1 and Lemma 2. By Defini-
tion 1 an arc stabs the gates properly only if every
gate is intersected only once. Circles centered in the
parabolic region, intersect the gate twice or (on the
parabola) never pass through the gate. Therefore we
include only the two straight boundary segments of
the parabolic region, which represent extreme cases of
passing through a boundary point and an additional
point on the gate. We exclude the rest of the parabolic
region as centers for intermediate gates, even though
in some circumstances when points on P are relatively
close together an arc might end at an endpoint on
P before it again intersects the gate. We will allow
points in the parabolic region at endpoints of the arc.

According to Lemma 1, one cone is the region of the
centers of disks including the left boundary point of
the gate and excluding the right boundary point. Cir-
cular arcs centered in these region pass the gate from
the correct side, according to the stabbing condition,
if they are in CCW orientation. In CW orientation
the arc would walk around the left boundary point be-
fore intersecting the gate. The unbounded part of this
cone lies to the left of P . Symmetrically the circular
arcs in the other cone need CW orientation to pass
the gate in the correct direction, and the unbounded
part of this cone lies to the right of P .

So from now on we talk about the left cone and the
right cone. A circular arc stabbing through the gates
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is not allowed to change its orientation.

Lemma 3 A circular arc a starting at a point p stabs
gates gi, . . . , gj properly if and only if its center lies
in the intersection of the left cones defined by p and
the gates, or the intersection of the right cones.

Proof. Straightforward. �

Lemma 4 Incremetally computing the two regions
of centers of all valid circular arcs passing through a
point p and stabbing all gi, . . . , gj gates properly, can
be done in O(n log n) time.

Proof. It is the incremental intersection of O(n) half
planes. �

3 Arc endpoints

A valid circular arc from pi to pj must reach each
point from the correct side of its gate. All arcs that
start at pi and end at pj have their centers on the bi-
sector of the segment connecting pi and pj . However,
some of these arcs will approach the gate from the
wrong side. We want to eliminate all such arcs, but
allow arcs that are tangent to a gate at its defining
point or which would circle back and cut the gate a
second time if the arc did not stop. This means that
we want to consider not only centers in the double
cone, but also in the parabolic region.

All points on the bisector of pi and pj can be centers
of arcs from pi to pj that reach pj from the correct
side of gj , but most can only go around the circle
in one direction. The exception is the circle which is
tangent to pj at gj. We call the center of this circle the
splitting point. All points on the ray of the bisector
that starts at the splitting point and goes right are
centers of CW arcs that meet pj from the correct side.
All points on the ray of the bisector that starts at the
splitting point and goes left are valid centers of CCW
arcs.

To determine which arcs meet pi from the correct
side of gi we do the symmetrical test, with the roles
of pi and pj reversed.

Lemma 5 Let b be the perpendicular bisector of the
segment between pi and pj . Let si be the point of
b which is the center of a circle tangent to gi at pi,
and let sj be defined symmetrically. The centers of all
CW arcs that reach both pi and pj from the correct
side are all points on b to the right of both si and sj .
CCW arcs are symmetrical.

Proof. This ray is the intersection of the CW rays
for both endpoints of the arc. �

4 Tolerance boundary

We break the tolerance boundary R into two polygo-
nal chains, one on each side of the original polygonal
chain P . When dealing with CCW circles we will ex-
clude the right chain, which we call the CCW bound-
ary. When dealing with CW circles we will exclude
the left chain, which we call the CW boundary. The
requirements that the arcs pass through gates and
that the tolerance boundary not intersect the interi-
ors of gates or cross the segments connecting bound-
ary points of successive gates guarantees that there
will be no conflict with the other boundary.

A circle passing though point p does not intersect or
contain any edge on a polygonal chain C if its center
lies closer to p than to any point on C. That is, if we
compute the Voronoi diagram of C ∪ p, the center of
the circle must lie in point p’s region, V (p).

This is not quite the condition that we want,
namely that a circular arc does not cross chain C. The
Voronoi region guarantees that an entire circle does
not cross C. However, in our case these are equiva-
lent.

Lemma 6 If an arc from gi to gj does not intersect
a tolerance boundary between gi and gj then neither
does the circle on which that arc lies.

Proof. For each pair of consecutive gates gk and gk+1

we are given that the section of the arc between them
does not intersect the section of the tolerance bound-
ary between gk and gk+1. But this section of the
tolerance boundary is not allowed to cross either the
segment connecting its start and end points or the
lines extending gk and gk+1. Therefore this section of
the boundary cannot intersect the rest of the circle,
either. �

While we could compute the entire Voronoi dia-
gram of C ∪ p to determine V (p), this would be too
expensive. Fortunately, we can interatively add n con-
secutive segments of C and update p’s Voronoi region
V (p) in O(n) total time.

Voronoi regions are “generalized star shaped”. This
means that a shortest segment from a boundary point
to a nearest point in the shape defining the region lies
entirely within the region.

Lemma 7 Each segment added will either cause no
change to V (p) or will replace a section of V (p) by
at most three new segments (two straight lines and a
parabola). (If V (p) is unbounded we think of an edge
“at infinity” connecting the two infinite rays, so that
these three “segments” are considered consecutive.)

Proof. Follows from the connectedness of C and the
generalized star-shaped property. �

27



22nd European Workshop on Computational Geometry, 2006

There are two parts to updating p’s Voronoi region
when adding a segment s to the diagram. First, we
find a place on the boundary of V (p) that is equidis-
tant from p and S, if such a place exists. If so, we
next walk around the boundary of V (p), eliminating
boundary sections until we reach the other place on
the boundary where p is equidistant from S. (Note
that either of these places could be “at infinity”.)

The second part is easy - walk around the boundary
of V (p) from the starting point, eliminating obsolete
bisector segments until you get to the finish point.

Because C is a polygonal chain, the first part is also
easy. V (p) is bounded by bisector pieces between p

and a subset of the segments in C. Of the segments
in this subset, there is a first segment F and a last
segment L, according to the order along the chain.

Lemma 8 If V (p) changes, then its boundary with
either V (F ) or V (L) must change.

Proof. The proof formalizes the idea if you can’t go
through the chain C, then the only way to get to V (p)
is through V (F ) or V (L). �

Lemma 9 We can compute the centers of all circular
arcs that pass between gi and gj without crossing the
tolerance boundary in O(n) time.

Proof. Incrementally add segments from C and
amortize the update time. �

5 Computing the shortest path

To determine the shortest path from the start point
to the end point of the polygonal curve we can build a
directed graph of all possible valid arcs and do a BFS
to find the shortest path from p1 to pn.

Theorem 10 A point c is the center of a valid CW
circular arc from pi to pj if and only if it is in the
intersection of:

• the intersection of the right cones between pi and
each of the gates gi+1 through gj−1.

• The region of V (pi) in the Voronoi diagram of
pi and all of the segments on the CW boundary
between gi and gj .

• all points on b to the right of both si and sj ,
where b, si, and sj are as defined in Lemma 5.

The conditions for valid CCW arcs are symmetrical.

Proof. Direct consequence of earlier lemmas. �

We find the possible arcs from a point pi to all
points further along P incrementally. We maintain
the intersection of the right cones, the intersection

of the left cones, the Voronoi region of pi with the
CW boundary, and the Voronoi region of pi with the
CCW boundary. At each step we update each of the
four items. We intersect each bisector ray with an
intersection of cones and with a Voronoi region, and
then test if the two intersections overlap.

Note that we can quit if both of the cone intersec-
tion regions become empty. In fact, we could quit
when the intersection of the right cones with the CW
boundary Voronoi region and the intersection of the
left cones with the CCW boundary Voronoi region are
both empty, if we could test this quickly.

Theorem 11 Given an open polygonal curve P =
(p1, . . . , pn), a polygonal tolerance boundary of size
O(n), and a gate for each pi, we can approximate
P by a minimum number of valid circular arcs in
O(n2 log n) time.

Proof. Each starting point takes O(n log n) time. �

6 Future Work

Because we compute all possible circular arcs from pi

to pj , we expect to be able to use this information
to match tangents of successive arcs or to compute
bi-arcs. We have partial results along these lines.
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