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Restricted Mesh Simplification Using Edge Contractions
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Abstract

We consider the problem of simplifying a triangle
mesh using edge contractions, under the restriction
that the resulting vertices must be a subset of the in-
put set. That is, contraction of an edge must be made
onto one of its adjacent vertices. In order to maintain
a high number of contractible edges under this re-
striction, a small modification of the mesh around the
edge to be contracted is allowed. Such a contraction
is denoted a 2-step contraction. Given m “important”
points or edges it is shown that a simplification hier-
archy of size O(n) and depth O(log n/m) may be con-
structed in O(n) time. Further, for many edges not
even 2-step contractions may be enough, and thus,
the concept is generalized to k-step contractions.

1 Introduction

In computer graphics objects are commonly repre-
sented using triangle meshes. One important problem
regarding these meshes is how to efficiently simplify
them, while maintaining a good approximation of the
original mesh. As an example, scanners often pro-
duce information redundant meshes containing mil-
lions of points and triangles. Further, often the sim-
plication should be performed in several rounds, such
that a level-of-detail hierarchy is constructed. One
application of such a hierarchy is that an appropriate
level may be chosen depending on viewing distance, as
finer details tend to be unnecessary as the distance in-
creases. Other applications include progressive trans-
mission and efficient storing. It is common to repre-
sent the level-of-detail hierarchy as a directed, acyclic
and hierarchical graph, where each level in the graph
corresponds to a level in the level-of-detail hierarchy,
and where each node in the graph corresponds to a
triangle, in the natural way. The first, top-most, level
in the graph corresponds to the input mesh. When
a contraction is made two triangles disappear, and
one or more triangles are affected in such a way that
their appearance change. In the graph this is repre-
sented with edges between disappearing triangles at
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some level i, and the affected triangles at level i + 1.
Such a graph will simply be denoted a hierarchical

graph, and the efficiency of a simplification algorithm
is directly related to the size [3, 11] and depth of
the hierarchical graph it may produce. Simplification
algorithms constructing hierarchies of size O(n) and
depth O(log n) have been presented for several prob-
lem variants [1, 2, 4, 10]. Mesh simplification is gener-
ally regarded as a mature field (see [5, 8] for surveys),
consisting of several suggested methods and problem
variants. In this paper the method of iteratively con-
tracting edges [1, 6, 7, 9] is considered, where contrac-
tions are made such that no crossing edges result from
the contraction. This method is examined under the
restriction that the set of output points is required to
be a subset of the input points, i.e., contraction of an
edge must be done onto one of its adjacent vertices. In
order to maintain a high number of contractible edges
a small modification of the mesh around an edge to
be contracted is allowed. This method is denoted a
2-step contraction, and it is shown that a hierarchical
graph of size O(n) and depth O(log n/m) may be pro-
duced under the restriction that several “important”
points or edges may not be contracted. Further, in
order to enable contraction of edges that are not even
2-step contractible the concept is generalized to k-step
contractions. We show that k can be bounded by ei-
ther deg(v) − 4 of a vertex v to be contracted, or by
the number of concave corners on the hull of v (see
Section 2 for definition).

(a) (b)

Figure 1: (a) A planar triangulation with a rectan-
gular outer hull is given as input. (b) Illustrating an
edge contraction (merge-operation).

2 Contracting in k steps

As input we are given a planar triangulation T . We
can assume that the outer hull of T is a rectangle, as
illustrated in figure 1a.
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Figure 2: Illustrating a 2-step contraction of a degree
6 node v.

The aim is to simplify T by iteratively perform-
ing edge contractions, as shown in Fig. 1b, where an
edge (u, v) can be contracted such that u is moved to
v, or v is moved to u. A problem that often occurs
during edge contractions of triangulations is that the
resulting triangulation might not be planar. An edge
contraction is said to be valid if the resulting trian-
gulation still is planar. In this paper we consider the
problems of defining valid contractions and comput-
ing valid contractions. Below some basic operations
and notations are defined:

Consider a vertex v and assume the degree of
v is d, and let u1, . . . , ud be the vertices adjacent
to v in clockwise order around v. The hull of v,
denoted H(v), is the cycle described by the edges
(ui, u(i+1) mod d) for 1 ≤ i ≤ d. We need some addi-
tional definitions. A split operation splits a vertex v
of degree d into two vertices v and v1 connected by
an edge such that the resulting triangulation is pla-
nar, v has degree d′ and v1 has degree d − d′ + 4, as
illustrated in Figure 2a-b. Next, a merge operation
contracts one vertex u onto another vertex u′, both
connected by an edge in T , into one vertex u′, as il-
lustrated in Figure 2c-d. Let d(u′) denote the degree
of u′ before the contraction. After the contraction u′

has degree d(u) + d(u′) − 3. And, finally, a split-and-

merge operation on vertices v and u first performs a
split operation of v, followed by a merge operation on
v1 and u. The split-and-merge operation is said to be
valid if the triangulation is planar at each step of the
operation. Note that an edge contraction is obtained
by a single merge operation.

Next we define 1-step contractible using the merge
concept, and we then generalize this concept into k-
step contractible. If two vertices u and v, connected
by an edge in the triangulation T can be merged into
a new vertex w placed at u such that the contracted
triangulation still is planar, then v is said to be 1-step

contractible (at u). A vertex v is said to be k-step

contractible if and only if one can perform at most
k − 1 valid split-and-merge operations followed by a
1-step contraction of v.

With regards to guaranteeing a hierarchical simpli-
fication graph of small size and depth, mainly 2-step
contractions will be considered. Figure 2 shows a ver-
tex v that is 2-step contractible since a valid split-and-

A

Figure 3: No edge in region A can be contracted,
unless using k-step contractions.
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Figure 4: The two cases of Theorem 1.

merge operation is followed by a 1-step contraction of
v. However, to be able to change the level of details for
models where the user is allowed to perform the stan-
dard operations - rotate, zoom and so on, we would
ideally perform edge contractions in small specified ar-
eas. For example, in configurations like the one shown
in Figure 3, if one wants to perform k-step contrac-
tions which change or contract only edges inside the
area A, then k has to be at least proportional to the
number of edges inside A (divided by some constant).

Thus, the generalized concept of a k-step contrac-
tion is needed, and below (Theorem 1 and 3) upper
bounds on k are shown.

Theorem 1 Any vertex v, not on the hull of T , with

degree at most m is k-step contractible, where k =
max{1, m− 4}.

Proof. The theorem is proven by induction on the
degree of v.
Base case: Vertices of degree at most four can easily
be 1-step contracted. We thus assume that v has de-
gree five, which immediately implies that H(v) con-
tains five points. Consider the interior of H(v). If
there exists a corner v′ of H(v) which can see all other
corners of H(v) then v is 1-step contractible at v′,
and thus, the theorem holds. Next, since H(v) has
at least three convex corners, H(v) has at most two
concave corners. If H(v) has only one concave corner
u then this corner must see all the vertices of H(v)
and, hence, v is 1-step contractible to u. If H(v) has
two concave corners we have two cases, as shown in
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v

Figure 5: Example of a vertex v that is not 1-step
contractible.

Figure 4. Note that edges between v and H(v) are
not included in order to avoid cluttering of the figure.
In the first case, Figure 4a, the concave corner points
p and u are not incident, while in the second, Figure
4b, they are.

First case First note that p and u must lie inside
the triangle defined by the three convex corners
in H(v), and also that p and u always see each
other. There exist two incident convex corner
points p′ and u′, such that p′ is incident on p and
u′ is incident on u. It is straightforward to see
that p sees all points of H(v) if the edge (p, p′)
does not cross the line-extension of the segment
(u, u′), as p then can see u′. The same holds
for u, the edge (u, u′) and the line extension of
(p, p′). However, both cases can not occur simul-
taneously as this implies that the edges (u, u′)
and (p, p′) must cross. Thus, either p or u can
see all of H(v).

Second case Consider the one convex corner point q
not incident on either p or u. Since q is connected
to both p′ and u′, q will see all corners of H(v) if
and only if q sees both p and u. Next, consider
the line-extension l of the segment (p, u). Since
p and u are concave corners p′ and u′ must lie on
the same side of l. Further, q must connect to
p′ and u′ such that p′ and u′ form convex angles
and p and u form concave angles. This means
that q must lie on the opposite side of p and u,
with regards to l, which immediately implies that
q can see both p and u.

Induction hypothesis: Assume that the theorem holds
for all vertices of degree at most m − 1.
Induction step: Assume that v has degree m. There
exists a point u on the hull of v that can see at least
four consecutive vertices of the hull including itself.
Denote these vertices u1, . . . , u4. Split v into v1 and
v such that v1 is connected to u1, . . . , u4 and v. Now,
v1 can be 1-step contracted at u. The degree of v is
now m−1, thus applying the induction hypothesis on
v proves the theorem. �

Note that if v has degree 6 then it might not be
1-step contractible as shown in Figure 5.

Corollary 2 At least two edges in T are 1-step con-

tractible.

Proof. Follows from Theorem 1 and the fact that any
planar graph has total degree at most 6n−12 (Euler’s
theorem). Details omitted. �

Note that if only few edges are 1-step contractible
then almost all vertices in T must have degree 6. The
bound stated in Corollary 2 is probably very conser-
vative. If the number of 1-step contractible edges is
small that implies that almost all vertices of T have
degree 6. However, we have not been able to con-
struct any examples where almost all vertices have
degree 6 while simultaneously being not 1-step con-
tractible. Next we present an alternative bound on k.
As only concave corners restrict visibility, intuitively
it should be easier to contract a vertex with few con-
cave corners on its hull. The following theorem can
be shown.

Theorem 3 Every vertex v, not on the hull of T ,

with at most c concave vertices on its hull is k-step

contractible, where k = c.

Proof. Proof omitted. �

3 The number of k-contractible edges

Allowing k-step contractions increases the flexibility
of simplification since it allows a greater fraction of
the edges to be contracted. In this section a lower
bound on the number of k-contractible edges is given,
where Theorem 1 and the fact that the total degree
is bounded is used.

Observation 1 At least (k−1
k+2 )n vertices are k-step

contractible, for any k ≥ 2.

Proof. Let L be the set of interior vertices of T that
are k-step contractible. From Theorem 1 we know
that L at least consists of all vertices of degree at
most d = k+4. Let N be the remaining set of interior
vertices. Recall that the sum of the degrees over all
vertices is at most 6n− 12. This implies that the size
of L is minimized when all vertices in N has degree
(d + 1) and the vertices in L and the four vertices on
the hull has degree 3. We have the following equation:

4·3+(d+1)|N |+3|L| = 6n−12 where |N |+|L| = n−4.

As a result it holds that |L| ≥
(

d−5
d−2

)

n ≥
(

k−1
k+2

)

n. �

4 The hierarchical graph

In this section we show that using 2-step contrac-
tions we can achieve a hierarchical graph, as defined in
the introduction, of size O(n) and depth O(log n/m),
given m important points or edges that may not be
contracted. In order to do this several edges must be
simultaneously contracted in each round, that is, at
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Figure 6: Initially x and y are contractible, but after
x has been contracted y is no longer contractible.

each level of the graph. Next, note that a previously
valid 1-step contractible edge might become invalid af-
ter other edges have been contracted, as shown in Fig-
ure 6. In order to avoid this problem, for the purpose
of finding simultaneously contractable edges, we con-
sider independent edges. Let S′

2 be the set of 2-step
contractible vertices of degree at most six. Combining
Theorem 1 and Observation 1 it is straightforward to
see that |S′

2| ≥
n
4 . Since a vertex in S′

2 has at most
six neighbors we can choose at least n

4·7 = n
28 vertices

from S′
2 such that none of these chosen vertices has a

neighbor from S′
2. Thus, there exists a constant frac-

tion γ of independent 2-step contractible vertices, and
the following theorem can be shown.

Theorem 4 Given m important points S′′ ⊂ S in a

triangulation T one can perform O(log n/m) rounds

of 2-step contractions to obtain a triangulation T ′ of

a point set S′ with complexity O(m) such that S′′ ⊆
S′ ⊂ S.

Proof. Let ni denote the number of vertices before
round i and consider an arbitrary constant δ < γ.
Perform rounds until m ≥ δni, that is until the re-
sulting point set S′ have complexity O(m). This is
possible, since as long as m ≤ δni, there are at least
γni − δni = (γ − δ)ni 2-step contractible vertices re-
maining, containing no important point. Thus, T ′ can
be obtained using at most O(log 1

γ−δ
n − log 1

γ−δ
m) =

O(log n − log m) = O(log n/m) rounds of contrac-
tions. �

Corollary 5 Using rounds of 2-step contractions a

hierachical graph of size O(n) and depth O(log n/m),
given m important points, may be produced in O(n)
time.

Proof. Note that the above theorem immediately en-
ables the construction of hierarchical graph of depth
O(log n/m). Next, consider the size. Note that the
number of nodes in the hierarchical graph is O(n)
and only 2-step contractible vertices of degree at most
six are used during the rounds of contractions. This
means that at most four triangles are affected by a
contraction, which implies that each node in the hier-
archical graph has at most four incident edges. Thus,
the hierarchical graph has size O(n)

Next, consider the time complexity of creating the
hierarchical graph. Note that the Theorem 4 was
shown using only 2-step contractible edges of constant
degree (at most six). Thus, in each round i the set
of γni independent 2-step contractible edges can be
found in O(ni) time. This means, since ni ≤ n(γ)i−1,
that the total running time is O(n+nγ+n(γ)2+ . . .+
n(γ)O(log n/m)) = O(n(γ + γ2 + . . . + γO(log n/m)) =
O(n). �

Finally, note that the above results also holds for m
important edges (or m edges and vertices, in total),
since each important edge restricts possible contrac-
tion for only a constant (two) number of vertices.
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