
EWCG 2006, Delphi, March 27–29, 2006

A New Approximation Algorithm for

Labeling Weighted Points with Sliding Labels∗
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Abstract

This paper presents a polynomial-time approximation
algorithm for labeling some of the points in a given set
of weighted points with horizontally sliding labels of
unit height and given lengths to maximize the weight
of the labeled points. The approach is based on a dis-
cretization, and two results are established: In gen-
eral, the algorithm has an approximation factor of
2/3 − ε, for arbitrary fixed ε > 0. If the ratio of
maximal to minimal label lengths is bounded by a
constant, the approximation factor becomes 1 − ε.

1 Introduction

Map labeling is the problem of placing a set of labels
next to a given set of points in the plane while meet-
ing certain conditions. Most often, the label associ-
ated with a point is of a specified rectangular shape
and must be placed in the plane without rotation
so that its boundary touches the point. One distin-
guishes fixed-position models and slider models. In
fixed-position models, the labeled point must belong
to a predetermined finite set of points on the bound-
ary of the label. Slider models allow the labeled point
to touch the label anywhere along a certain segment
of the label’s boundary. Poon et al. [3] introduce a
hierarchy of fixed-position and slider models.

In this paper we consider the slider model 1SH [3]
that is defined as follows. Let P be a set of n points
in the Euclidian plane R

2. The x and y coordinates
of a point p are denoted by px and py, respectively.
We associate with each point p ∈ P an axes-parallel
open rectangular shape Lp of unit height and length
lp ∈ R>0, the label of p. Each point p ∈ P has a weight
wp ∈ R>0. An instance of a 1SH-labeling problem is
given by the triple I = (P, l, w). A (1SH-) labeling of
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I is a family L = {rp}p∈Q, indexed by the elements
of Q ⊆ P , where rp ∈ [0, lp] places Lp in the plane
with its right edge at the x-coordinate px + rp and
its lower edge at the y coordinate py; see Fig. 1. For
any two points p, q ∈ Q, the values of rp and rq must
be such that Lp ∩ Lq = ∅. Points in Q are said to be
labeled. We define wL :=

∑

p∈Q wp to be the weight of
the labeling L = {rp}p∈Q. A labeling of I is optimal
if no labeling of I has a larger weight. We denote the
weight of an optimal labeling of I by wopt(I).
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Figure 1: Left : A 1SH-labeling L. Right : The corre-
sponding normalization L∗ and GL∗ .

Poon et al. [3] show that finding an optimal 1SH-
labeling is NP-hard even if all points lie on a hori-
zontal line and the weight of each point equals the
length of its label. For the one-dimensional case, they
give a fully polynomial-time approximation scheme,
which yields an O(n2/ε)-time (1/2−ε)-approximation
for the two-dimensional case. Poon et al. also give
a polynomial-time approximation scheme (PTAS) for
unit-square labels. They raise the question of whether
a PTAS exists for rectangular labels of arbitrary
length and unit height. This is known to be the case
for fixed-position models [1] and for sliding labels with
unit weight [4].

In this paper we make a step towards settling the
question. We present a new approximation algorithm
for 1SH-labeling. If the ratio of maximal to minimal
label lengths is bounded by a constant, our algorithm
is a PTAS. In the general case our algorithm has an
approximation factor of 2/3 − ε, for arbitrary fixed
ε > 0. This is an improvement over the approximation
factor of 1/2 − ε of Poon et al. [3].

In Section 2 we discretize the problem. The idea
is to compute, for a given problem instance I =
(P, l, w), “suitable” sets of discrete label positions for
each point in P . “Suitable” means that the weight
wopt(Ifix) of an optimal labeling of the resulting in-
stance Ifix of a fixed-position labeling problem must
be close enough to wopt(I). This leads to a two-step
approximation algorithm for the slider model 1SH:
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First discretize the given problem instance. Then ap-
ply an algorithm, e.g., the one in [1], to the computed
fixed-position problem instance. In Section 3 we con-
sider the requirements for and the quality of the dis-
cretization.

2 Approximation by a Fixed-Position Model

By the diameter of a directed graph G we mean the
maximum number of nodes on any path in G. As
a first step towards discretization, we associate with
each labeling L a directed graph GL. If, for some
constant t ∈ N, GL has a subgraph of weight at
least (1 − 1/t)w(L) and of diameter bounded by a
constant g, then we can compute an instance I of
a fixed-position labeling problem such that an opti-
mal labeling of I has weight at least (1 − 1/t)w(L).
Roughly speaking, in order to compute the instance
I, we enumerate all positions that a label can have if
it is part of a chain of at most g labels that succeed
each other in the following sense.

Definition 1 Let L = {rp}p∈Q be a labeling and let
p, q ∈ Q. The label Lq succeeds Lp (with respect to
L), written Lp → Lq, if (a) the left edge of Lq touches
the right edge of Lp other than at a corner, (b) the
vertical line supporting the left edge of Lq contains
no point in Q, and (c) rq 6= 0.

The position of each label in a chain of labels that
succeed each other depends on the position of the first
label in the chain. The following definition discretizes
the position of the first label and thus of all its suc-
cessors.

Definition 2 Let L = {rp}p∈Q be a labeling. For
q ∈ Q, a label Lq is in normal position (with respect
to L) if (a) rq = 0, (b) the vertical line supporting
the left edge of Lq contains a point in Q, or (c) Lq

succeeds Lp for some p ∈ Q. If all labels of L are in
normal position, then L is normal.

We can obtain a normal labeling from an arbitrary
labeling by processing the labeled rectangles in the
order from left to right and moving each rectangle
left until it first reaches a normal position. We call
this process normalizing the labeling. For an example
see Fig. 1.

We could associate a directed graph G = (Q, E)
with a labeling {rp}p∈Q by defining (p, q) ∈ E if and
only if Lp → Lq. However, this is not entirely sat-
isfactory: On the one hand, we want to bound the
diameter of the graph. On the other hand, we want
to normalize labelings. However, normalization may
increase the diameter by too much. For this reason we
also define an edge whenever there is the “possibility”
that a label Lq succeeds a label Lp, namely if a nor-
malization after the removal of some other labels can

make this happen. This gives rise to the edge (p, q)
in Fig. 1.

Definition 3 Let L = {rp}p∈Q be a labeling. The
labeling graph GL = (Q, E) of L has the edge (p, q) if

(E1) px < qx,

(E2) px + rp > qx − lq,

(E3) (py, py + 1) ∩ (qy, qy + 1) 6= ∅, and

(E4) there is no p′ ∈ Q such that
px + rp ≤ p′x ≤ qx − lq + rq.

For a label Lq to succeed a label Lp, the point p
must lie to the left of q (E1). Properties (E2) and
(E3) ensure that Lp and Lq overlap if Lq is shifted as
far left as possible. Finally, (E4) implies that there is
no point in Q between the right edge of Lp and the
left edge of Lq. Note that Lp → Lq implies (E1)–(E4).
We define the weight of a labeling graph GL as the
weight of the labeling L. The following lemma lists
properties of labeling graphs that we will need later.

Lemma 1 Every labeling graph is a planar directed
acyclic graph. If (p, q) is an edge of the graph, then
this edge is the only path from p to q.

Now we can state precisely the condition under
which we can discretize a 1SH-labeling problem such
that the optimal weight of the resulting discrete in-
stance is close enough to that of the original instance.

Theorem 2 Assume that for some instance I =
(P, l, w) of the 1SH-labeling problem, there are g ∈ N

and α ∈ R such that for every labeling L of I, there
is a normal labeling L∗ of I with wL∗ ≥ αwL for
which the diameter of GL∗ is bounded by g. Then,
in O(ng+1) time, we can compute for each p ∈ P a
set M(p) ⊆ [0, lp] of cardinality O(ng) such that the
instance Ifix of the fixed-position labeling problem de-
fined by the sets M(p) fulfills wopt(Ifix) ≥ αwopt(I).

Proof. For τ = 1, . . . , g, we compute for each p ∈ P
a set M(p, τ) that contains all possible values of rp in
a normal labeling whose longest chain of labels ending
in Lp contains τ labels.

M(p, 1) =
(

{qx − (px − lp) | q ∈ P} ∪ {0}
)

∩ [0, lp]

for all p ∈ P , and for τ = 2, . . . , g and for all p ∈ P ,

M(p, τ) =
{qx + r − (px − lp) | q ∈ P, r ∈ M(q, τ − 1)} ∩ [0, lp].

Finally, let M(p) =
⋃g

τ=1 M(p, τ). Clearly
|M(p, 1)| ≤ n + 1 and, by induction, |M(p, τ)| =
O(nτ ) for τ = 1, . . . , g. Thus |M(p)| = O(ng) for
all p ∈ P , and M(p) can be computed for all p ∈ P in
O(ng+1) time.
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If L is an optimal labeling of I, then, by assumption
on g, there is a normal labeling L∗ = {r∗p}p∈Q (Q ⊆
P ) of I whose weight is at least (1 − 1/t)wopt(I) and
whose labeling graph GL∗ has diameter at most g.
By the construction above, r∗p ∈ M(p) for each p ∈ Q.
Thus L∗ is a labeling of the fixed-position problem
instance Ifix defined by the sets M(p), so wopt(Ifix) ≥
(1 − 1/t)wopt(I). �

3 Simplifiable Graphs

To satisfy the prerequisites of Theorem 2, we are in-
terested in families of labeling graphs for which, for
each constant t ∈ N, there is a constant g = g(t)
such that every labeling graph G in the family is
trimmable for g, i.e., contains a subgraph G′ with
weight w′ ≥ (1 − 1/t)w and diameter at most g(t).
As a tool we use the stronger notion of simplifiable
graphs, which we now define.

Definition 4 Let G = (V, E) be a directed graph. A
simplification of G is a function f : V → Z with the
following properties:

(S1) ∀(v, w) ∈ E : 0 ≤ f(w) − f(v) ≤ 1.

(S2) For all v ∈ V , there exists at most one w ∈ V
such that (v, w) ∈ E and f(v) = f(w).

The graph G is said to be simplifiable by f and for
each i ∈ Z, the set Vf (i) = {v ∈ V | f(v) = i} is
called the ith level of G with respect to f .

0

0

1

0
1

0

1
0

Figure 2: A graph with a simplification. Dashed ar-
rows indicate a change of levels.

We write V (i) instead of Vf (i) whenever f is clear
from the context. Given a graph G = (V, E) and a
subset V ′ of V , we denote by G[V ′] the subgraph of
G induced by V ′. Now we exploit property (S1) to
reduce the trimming of graphs to that of levels.

Lemma 3 Let G = (V, E) be a labeling graph with
simplification f and let t ∈ N. Assume that for each
i ∈ Z, there is a subset V ′(i) of V (i) such that G[V ′(i)]
has weight at least (1 − 1/(2t))w(G[V (i)]) and diam-
eter at most g′(t). Then there is a subgraph G′ of G
with weight at least (1−t)w(G) and diameter at most
(2t − 1)g′(t).

Proof. Consider the subgraphs

Gτ := G[V \
⋃

i∈Z

V (τ + 2ti)], τ = 0, . . . , 2t− 1,

in which we remove every (2t)th level of G. By the
pigeon-hole principle, there is a τ0 ∈ {0, . . . , 2t − 1}
such that Gτ0

has weight at least (1 − 1/2t)w(G).
Due to property (S1), the nodes of any path in Gτ0

span at most 2t − 1 distinct levels of G. Hence, with
V ′ =

⋃

i∈Z
V ′(i), the graph

G′ := G[V ′ \
⋃

i∈Z

V ′(τ0 + 2ti)]

corresponding to Gτ0
has the required property. �

Property (S2) implies that each node has at most
one successor within its own level. Thus a level V (i)
is an in-forest; see Fig. 2. For r = 0, . . . , 2t − 1, let
V ′

r (i) be the subset of V (i) obtained by removing all
nodes whose depth in the forest modulo 2t is r. By
the pigeon-hole principle, the set V ′(i) with maximum
weight among the sets V ′

r (i) satisfies the requirements
of Lemma 3 with g′(t) = 2t − 1.

Theorem 4 Every simplifiable labeling graph is
trimmable for g(t) = (2t − 1)2.

3.1 Outerplanar labeling graphs

Lemma 5 Let F be the subgraph of a labeling graph
spanned by the nodes on the boundary of one of its
faces. For every edge (v, w) of F , there are sim-
plifications f and f ′ of F with f(w) = f(v) and
f ′(w) = f ′(v) + 1.

This lemma depends on the last property noted in
Lemme 1. The proof is simple and can be found in [2].

Theorem 6 Every outerplanar labeling graph is sim-
plifiable.

Proof. A simplification can be constructed essen-
tially as follows. Begin by choosing an arbitrary inner
face of the graph. By Lemma 5, a simplification of this
face exists. Then extend the simplification face by
face to a simplification of the entire graph. The clue
is that by outerplanarity, there is always a face that
shares either exactly one node or one edge with the
current subgraph. Hence extending the simplification
can be done with a repeated application of Lemma 5.
Tree parts of the graph can also be handled easily. We
refer to [2] for a detailed proof. �

We apply this result in the context of stabbing lines.
A set S of stabbing lines with respect to a labeling
{rp}p∈Q is a set of horizontal lines with the following
properties: Each line has distance greater than 1 from
every other line, each line intersects at least one label,
and each label is intersected by exactly one line. With
each stabbing line l we may associate a “sub-labeling”
consisting of all rp such that Lp intersects l. For more
on stabbing lines, see, e.g., [1, 2].
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Proposition 7 If L is a labeling with two stabbing
lines, then the labeling graph GL is outerplanar.

Proof. In a natural planar embedding of GL, each
node can be reached from above or from below by
a vertical ray from infinity that does not cross any
edges. Therefore all nodes of GL lie on the boundary
of the outer face. �

The following corollary is an immediate conse-
quence of the results of this section, Theorem 2 and
the two-step algorithm outlined in Section 1. Its proof
again relies on the pigeon-hole principle: Consider re-
moving all labels stabbed by every third line. An op-
timal fixed-position labeling for k stabbing lines can
be computed in Ak(ñ) = O(ñ2k−1) time, where ñ is
the size of the fixed-position instance [1].

Corollary 8 There exists an approximation algo-
rithm with factor 2/3(1 − 1/t) for the slider model
that runs in O(ng(t)+1) + A2(n

g(t)+1) = O(n3(g(t)+1))
time, where g(t) = (2t − 1)2.

3.2 Bounded Ratio of Label Lengths

The labeling graph of Fig. 3 is not simplifiable: As the
numbers next to the nodes indicate, on the path from
a via b to c any simplification would need to “jump”
at least two levels.

0
1 2 3

a

b

c

Figure 3: A labeling graph whose labeling needs three
stabbing lines.

The example easily extends in such a way as to force
a simplification to make arbitrarily large “jumps”.
However, the ratio of the maximal label length M
to the minimal label length m would tend to infinity
in the process. This gives rise to the following idea:
let λ ∈ N and replace (S1) in the definition of a sim-
plification by

(S1λ) ∀(v, w) ∈ E : 1 ≤ f(w) − f(v) ≤ λ

We call a function f with properties (S1λ) and
(S2) a λ-simplification and the corresponding graph
λ-simplifiable. Note that f(w) ≥ f(v) + 1 for each
edge (v, w) according to this definition. Therefore,
each level V (i) induces a subgraph of diameter 1 (con-
sisting of isolated nodes). In the proof of Lemma 3
we can set V ′(i) = V (i) and have g′(t) = 1. If further
not only one but λ consecutive levels out of t levels

are removed from the graph to get Gτ , the pigeon-hole
principle yields the following analog of Theorem 4.

Theorem 9 If G is a λ-simplifiable labeling graph of
a labeling L and t is an integer with t > λ, then G
contains a subgraph with weight at least (1−λ/t)w(L)
and diameter at most g(t) = t − λ.

Theorem 10 Let I be a problem instance with
M/m ≤ ρ for some ρ ∈ N. Then the labeling graph
of every labeling of I is (2ρ)-simplifiable.

Proof. Consider a labeling L = {rp}p∈Q of I. The
idea is to divide the x-axis into intervals of length
m and to assign a node p of GL to level i if the x-
coordinate of the left edge of Lp belongs to the inter-
val [im, (i + 1)m). This is achieved by the following
function f : Q → Z:

f(p) =

⌊

px − lp + rp

m

⌋

, p ∈ Q.

Let (p, q) be an edge of the labeling graph. By proper-
ties (E1), (E2) and (E3) and the fact that Lp and Lq

do not overlap, the left edge of Lq is at least lp ≥ m
and at most lp + lq ≤ 2M to the right of the left edge
of Lp. Therefore 1 ≤ f(q) − f(p) ≤ 2ρ, which shows
f to be a (2ρ)-simplification of GL. �

Plugging Theorem 10 into Theorem 9 and using a
PTAS for fixed-position models [1] yields a PTAS for
instances with bounded ratios of label lengths.

Corollary 11 For all instances with M/m ≤ ρ for
some ρ ∈ N and for all integers t > 2ρ and k ≥ 1, there
exists a factor-(1−2ρ/t)(1−1/(k+1)) approximation
algorithm that runs in O(Ak(ng(t)+1)) time, where
g(t) = t − 2ρ.
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