
EWCG 2006, Delphi, March 27–29, 2006

A certified algorithm for the InCircle predicate among ellipses

Ioannis Z. Emiris∗ Elias P. Tsigaridas∗ George M. Tzoumas∗

Abstract

This paper examines the InCircle predicate among el-
lipses in the Euclidean plane, under the exact com-
putation paradigm. The ellipses are non-intersecting
and given in parametric representation. We present
a subdivision-based algorithm and implement it in
Maple and CORE.

1 Introduction

We study the InCircle predicate for the Voronoi di-
agram of ellipses. This is the hardest predicate for
implementing the algorithm of [7] and has not been
solved in the exact computation paradigm. The work
coming closest to ours is [5]: The authors essen-
tially trace the bisectors in order to compute the
Voronoi cells of arbitrary curves up to machine preci-
sion. Their algorithm uses floating point arithmetic;
they claim that their software works well in practice.
Although they argue that their algorithm can be ex-
tended to exact arithmetic, they do not explain how.
For instance, they do not discuss degenerate configu-
rations. Our implementations are exact but can also
run with any prescribed precision.

It seems hard, for the algebraic approach of [3], to
yield a fast solution. All four predicates of the in-
cremental algorithm [7] were studied in [4], including
a certified subdivision-based algorithm for InCircle,
implemented in Maple. In this paper, we offer a bet-
ter implementtion using the CORE library [6]. The
algorithm “moves” on the border of parametrically
defined ellipses. This avoids computing the Voronoi
circle explicitly.

The Voronoi circle is specified at any desired ac-
curacy. This is achieved by refining the interval ex-
pressing its 3 tangency points until the predicate can
be decided; in fact, all tangency points are expressed
as a function of one of them. Exactness is guaranteed
by root separation bounds.

Let the length of the axes be 2α, 2β and (xc, yc) be
the center. We use the parametric representation:

x(t) = xc − (α(1 − w2)t2 + 4βwt − α(1 − w2))/d

y(t) = yc + 2(−αwt2 + β(1 − w2)t + αw)/d,

∗Dept. of Informatics and Telecommunications, Na-
tional and Kapodistrian University of Athens, Greece,
{emiris,et,geotz}@di.uoa.gr

Figure 1: Left: The 6 bitangent circles. The Apollonius

circle is the 4th from the left. Right: Starting intervals for
t, r, s (and region of the Voronoi vertex)

where d = (1+w2)(1+t2), t = tan(θ/2) ∈ (−∞,∞), θ
is the angle that traces the ellipse, w = tan(φ

2), and φ
is the rotation angle between the major and horizontal
axes. We denote by Et an ellipse parameterized by t.

2 The bitangent circle

Lemma 1 Given 2 ellipses and a point on the first,
there may exist up to 6 real bitangent circles, tangent
at the specific point. This bound is tight. Only one
such circle is external to both ellipses.

We call this unique external bitangent circle the
Apollonius circle of the 2 ellipses, e.g. the third circle
from the right in fig. 1 (left).

Given ellipses Et, Er, the tangency points of any
Apollonius circle lie inside their Convex Hull (CH).
This offers a starting point to begin our search for the
tangency point of the Voronoi circle within a contin-

uous range on the boundary of an ellipse. Now, con-
sider all bitangent circles to Et, Er, tangent at point
t of Et.

We shall compute arc (r1, r2) on Er which contains
only the tangency point of the Apollonius circle, iso-

lating it from the tangency points of non-external bi-
tangent circles. Consider all bitangent circles at t.
Also, consider the lines from t tangent to Er at points
r1, r2. They define two arcs on Er . Arc (r1, r2), whose
interior points lie on the same side of line r1r2 as t, is
called a visible arc.

Visible arc (r1, r2) contains only tangency points of
bitangent circles at t, which are externally tangent to
Er, but may be internally tangent to Et. They include
the Apollonius circle of Et, Er, tangent at t ∈ Et.

225

22nd European Workshop on Computational Geometry, 2006

V

Q

e

P F

A

F

P V

e

A

Q

Figure 2: The visible arc and the Apollonius circle

Lemma 2 Given is a point P = (x(t), y(t)) on Et.
Consider line ε, tangent at P (cf. fig. 2). If ε does not
intersect Er , then the visible arc contains a unique
Apollonius circle. Otherwise, the endpoints of such an
arc are: the intersection of ε with Er and the endpoint
of the visible arc which lies on the opposite side of Et

with respect to ε.

Given ellipses Et, Er their bisector B(t, r) is a bi-
variate polynomial of degree 6 in t and 6 in r. The
above lemma provides an isolating interval for the
unique root r̂ of B(t, r), which lies on the visible arc
of Er with respect to some fixed t. In other words, r̂
corresponds to the Apollonius circle.

Given a point (x(t), y(t)) on Et, the squared radius

of the Apollonius circle of Et, Er tangent to Et at that
point is denoted by ftr(t). It follows that

ftr(t) :=
(

v1(t, r̂) − x(t)
)2

+
(

v2(t, r̂) − y(t)
)2

,

where r̂ is the root of the bisector that corresponds
to the Apollonius circle, when we fix t, and (v1, v2) is
the intersection of the normals at t and r̂.

In the sequel, we assume that ftr(t) is defined on a
continuous interval (a, b). The interval can also be of
the form (−∞, a)∪(b,∞), but in this case the problem
is identical or easier.

Lemma 3 Function ftr(t) consists of two strictly
monotone parts, one decreasing and one increasing.

We have not proved the function’s convexity, though
this is implied by numerical examples.

Our overall algorithm maintains an interval that
contains the tangency on Et. At every iteration, it
picks some value for t within the interval and solves
B(t, r) for finding r̂, which was defined above. These
values are used to determine the sign of S, to be in-
troduced below.

3 Deciding the predicate

The Voronoi circle is the circle which is externally
bitangent to Et, Er, and Et, Es at the same time. Its

Ars Arh

fth

t

ftsftr

Figure 3: Deciding the predicate

tangency point on Et is defined by the condition:

Strs(t) = 0, where Strs(t) = ftr(t) − fts(t),

where ftr (and similarly fts) in the case of ellipses
becomes

ftr(t) =
1

4
Pt(t)

(

Atr(t, r̂)

(1 + t2)(1 + r̂2)Dtr(t, r̂)

)2

.

In the above equation, Pt(t) has no real roots, Atr is
a bivariate polynomial of degree 2 in t and 4 in r and
Dtr 6= 0, unless the normals at t, r̂ are parallel.

We factor Strs(t) as follows:

Pt(t) ·
ˆ

Q1(t, r̂, ŝ) − Q2(t, r̂, ŝ)
˜

·
ˆ

Q1(t, r̂, ŝ) + Q2(t, r̂, ŝ)
˜

4
ˆ

(1 + t2)(1 + r̂2)(1 + ŝ2)Dtr(t, r̂)Dts(t, ŝ)
˜

2
(1)

We use a customized bisection to approximate a root
of Strs(t). We only need to determine the sign Q1 −
Q2 and Q1 + Q2, since the rest of the terms in (1)
are always positive. This way we avoid computing f
explicitly.

We express the Voronoi circle of Et, Er, Es by an
interval containing t, such that (x(t), y(t)) is the tan-
gency point on Et.

1 We start by the initial interval
[a, b] that contains the tangency point and subdivide
it by bisection. The subdivision operator yields

[a+b
2 , a+b

2], if Strs(
a+b
2) = 0,

[a, a+b
2], if Strs(a)Strs(

a+b
2) < 0,

[a+b
2 , b], otherwise.

Theorem 4 Let x ∈ [a, b] be the root of Strs(x). If
Strh(x) > 0, then Eh intersects the Voronoi circle of
Et, Er, Es. If Strh(x) < 0, then Eh lies outside the
Voronoi circle. Otherwise, Eh is externally tangent to
this circle.

1This interval might contain tangency points of other non-
external tritangent circles, but they don’t interfere with our
approach, since it deals only with externally bitangent circles.

226

EWCG 2006, Delphi, March 27–29, 2006

Note that there is no such case such as internal
tangency. This is due to the fact that we deal only
with externally tangent circles.

Clearly, there is a neighborhood U of x where
sgn(Strh(u)) = sgn(Strh(x)), ∀u ∈ U . In our im-
plementation, to find U , it will suffice to separate the
roots of Strs,Strh.

We now establish the exactness of our algorithm.
Consider system ∆1(v1, v2, q) = ∆2(v1, v2, q) =
∆3(v1, v2, q) = q − v2

1 − v2
2 + s = 0 [4], where (v1, v2)

is the center and s the squared radius of the Voronoi
circle. Let us eliminate v1, v2, q; the resultant R(s)
is of degree 184 in s and has coefficient bit size
3 · 56 · τ∆ = 168τ∆. Here 56 equals the mixed volume
of the system ∆i, ∆j , q − v2

1 − v2
2 + s, if we consider

s as a parameter, and τ∆ denotes the bit size of the
coefficients of ∆i, where 1 ≤ i, j ≤ 3 and i 6= j.

The minimum distance between two real roots of a
polynomial P of degree d and bit size τ is sep(P) ≥
d−(d+2)/2(d + 1)(1−d)/22τ(1−d) [9], thus the number of
bits that we need in order to compute s is no more
than 1389 + 30744 τ∆.

In order to compare two radii s1 and s2, which are
roots of polynomials R1 and R2 respectively, we need
a bound for |s1 − s2|. Since |s1 − s2| ≥ sep(R1R2),
where the polynomial R1R2 has degree 368 and coef-
ficient bit size 8+336τ∆, it follows that the number of
bits needed is 1508 + 30324τ∆. This is tight, because
the system has optimal mixed volume [3].

In computing the implicit representation the bit size
increases by a factor of 6. If the parametric input
coefficients have τ bits, then τ∆ = 6τ . If the order of
convergence of our method is φ, then the number of
iterations needed is logφ (1508 + 181944τ).

4 Implementation and experiments

A reference implementation with parametric ellipses
has been done in Maple 9. We have implemented
a small algebraic number package that performs ex-
act univariate real root isolation, comparison and sign
evaluation of univariate (bivariate) expressions over
one (two) algebraic number(s), using Sturm sequences
and interval arithmetic over Q.

We speed up the subdivision by noticing that Strs

is strictly monotone in the starting interval [a, b] and
has a unique simple real root in it. So we use Brent’s
method with theoretical convergence rate φ = 1.618
[1]. Let [a, b] be any interval and m = a+b

2 . The

new endpoint is x = m + P
Q , where R = Strs(m)

Strs(b) ,

S = Strs(m)
Strs(a) , T = Strs(a)

Strs(b) , P = S(T (R − T)(b − m) −

(1 − R)(m − a)) and Q = (T − 1)(R − 1)(S − 1). If
x /∈ [a, b] then the new estimation is m. However, in
practice we observe a fast growth of bitsize, if we use
this method with an exact number type, i.e. rationals.

Based on this reference implementation in Maple,

we implemented the algorithm in C++ using CORE.
While still in a preliminary stage, it is faster than the
Maple implementation. In this case it is possible to
certify our algorithm based on constructive root sep-
aration bounds e.g. [2, 10], which should be tighter
than the static bounds now used. In this implemen-
tation, the input quantities are of type BigRat (ra-
tional numbers), while the endpoints of the interval
that expresses the Voronoi circle are BigFloats (multi-
precision floating point). Evaluation of Q1±Q2 in (1)
is performed using CORE::Expr constructs after con-
verting t from BigFloat to BigRat. This, along with
B(t, r) seem to be the most heavy computations, due
to growth of bitsize. In a future improvement we will
use guaranteed precision arithmetic with BigFloats.
Another improvement will be to use information from
previous iterations (where t has fewer correct bits) in
order to solve B(t, r) and determine the sign of Q1

and Q2.

We performed several preliminary experiments with
different triplets of ellipses and circles. We consider
a query ellipse (circle) with its centre moving along a
line and measure the time taken to decide its relative
position wrt the Voronoi circle. Among the various
configurations, there were both degenerate and non-
degenerate cases.

We did our experiments on a P4 2.6GHz. In fig. 4
we present the times for 2 test suites, where the el-
lipses have 10-bit coefficients in their parametric form.
The first graph involves ellipses that do not share a
common Voronoi circle with the query one, whose cen-
ter moves along the line y = −x (fig. 5 left). Notice
that the time increases as we approach a degenerate
configuration. Although the hardest cases took about
5s, in 90% of the cases we can decide in less than 2.5s.
The C++ implementation without any compiler op-
timizations is 2 times faster than Maple. The second
graph involves circles (fig. 5 right). The peak corre-
sponds to nearly degenerate configurations, running
in 38s and 200 iterations. In all other cases the tim-
ings are less than 2.5s. Again, the C++ implementa-
tion is 3-4 times faster.

Our implementations are exact but can also run
with any prescribed precision, e.g. for rendering pur-
poses. In particular, a much faster execution is pos-
sible for the above algorithms if we restrict ourselves
to machine precision, as in [5].

Solving the algebraic system B(t, r) = B(t, s) =
B(r, s) = 0 with the SYNAPS [8] package of multi-
variate subdivision in 3 msec to 1 min, depending on
how large the initial domain was. Moreover, we used
PHCpack, to solve the system of ∆i’s, in about 36
seconds. These running times indicate that our dedi-
cated solver sometimes outperforms generic solvers on
the algebraic system. Moreover, solving the algebraic
system alone does not suffice to completely decide the
predicate, contrary to our algorithm.

227

22nd European Workshop on Computational Geometry, 2006

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

-8 -6 -4 -2 0 2 4 6 8

"ee2.out"
"ee2-maple.out"

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 1.5 2 2.5 3

"cc-degen.out"
"cc-degen-maple.out"

Figure 4: Execution time as function of the position of the
query ellipse’s (circle’s) center. The solid line corresponds
to C++, the dotted one to Maple.

84

8

0

-8

4

-8 -4

-4

0

320

-3

1

1

-3

3

-2

-1

4

2

-2

0

-1

Figure 5: Test suites

5 Future work

Our final goal is a CGAL implementation of the
Voronoi diagram of ellipses. Working in C++ may
allow us to use one of the powerful interval arith-
metic packages. We tried the iCOs interval-arithmetic
solver 2 on the system of ∆i’s with bitsize 60. It de-
tects a degeneracy in about 213 sec on a 1GHz P3.

The most difficult part of the implementations
is the detection of a degeneracy. Although near-
degenerate inputs can be handled quite efficiently, real
degeneracies exploit the separation bound and need a
large number of iterations. Then, the computed quan-
tities grow too large. We are currently trying to opti-

2http://www-sop.inria.fr/coprin/ylebbah/icos/

mize the inner loop. In this direction, we are looking
for better ways to perform certified sign computation
of Q1 ± Q2, as well as better separation bounds us-
ing geometric arguments and exploiting the algebraic
approach.

Acknowledgments All authors acknowledge partial

support by IST Programme of the EU as a Shared-

cost RTD (FET Open) Project under Contract No IST-

006413-2 (ACS - Algorithms for Complex Shapes) and by

PYTHAGORAS, project 70/3/7392 under the EPEAEK

program funded by the Greek Ministry of Educational Af-

fairs and EU. GT is partially supported by State Scholar-

ship Foundation of Greece, Grant No. 4631.

References

[1] R. Brent. Algorithms for Minimization without

Derivatives. Prentice-Hall, Englewood Cliffs, N.J.,
1973.

[2] C. Burnikel, S. Funke, K. Mehlhorn, S. Schirra, and
S. Schmitt. A Separation Bound for Real Algebraic
Expressions. In ESA, volume 2161 of LNCS, pages
254–265. Springer, 2001.

[3] I. Emiris and G. Tzoumas. Algebraic study of the
Apollonius circle of three ellipses. In Proc. Europ.

Works. Comp. Geom., pages 147–150, Holland, 2005.
Also: Poster session, CASC’05, Greece. To appear in
SIGSAM Bulletin.

[4] I. Emiris, G. Tzoumas, and E. Tsigaridas. The pred-
icates of the Voronoi diagram of ellipses. Symp.

of Comp. Geom., 2006. To appear. Available from
http://www.di.uoa.gr/∼geotz/.

[5] I. Hanniel, R. Muthuganapathy, G. Elber, and M.-
S. Kim. Precise Voronoi cell extraction of free-form
rational planar closed curves. In Proc. 2005 ACM

Symp. Solid and phys. modeling, pages 51–59, Cam-
bridge, Massachusetts, 2005. Best paper award.

[6] V. Karamcheti, C. Li, I. Pechtchanski, and C. Yap.
A CORE library for robust numeric and geometric
computation. In 15th ACM Symp. on Computational

Geometry, 1999.

[7] M. Karavelas and M. Yvinec. Voronoi diagram of
convex objects in the plane. In Proc. ESA, pages
337–348, 2003.

[8] B. Mourrain, J. P. Pavone, P. Trébuchet, and E. Tsi-
garidas. SYNAPS, a library for symbolic-numeric
computation. In 8th Int. Symposium on Effective

Methods in Algebraic Geometry, MEGA, Sardinia,
Italy, May 2005. to appear.

[9] C. Yap. Fundamental Problems of Algorithmic Alge-

bra. Oxford University Press, New York, 2000.

[10] C. Yap. On guaranteed accuracy computation. In
F. Chen and D. Wang, editors, Geometric Computa-

tion, volume 11 of Lect. Notes Series Comp. World
Scientific, 2004.

228

